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Abstract 

The plane-wave theory of a three-crystal Laue inter- 
ferometer is presented in terms of the amplitudes 
diffracted by a single slab in the Laue case, using 
Zachariasen's formalism. Successive applications of 
the single-slab expressions for the amplitudes lead to 
the final intensities of the interfering beams present 
on the back side of the third crystal slab. Numerical 
examples for X-ray and neutron diffraction show 
clearly the different contrast relationships in the two 
cases .  

I. Introduction 

The theory of a three-crystal symmetric Laue inter- 
ferometer for spherical waves, in the case of zero 
absorption (neutrons or X-rays), has been developed 
by Bauspiess, Bonse & Graeff (1976). Such a theory 
contains the plane-wave situation as a particular case. 
An equivalent treatment, with full consideration of 
absorption, has also been presented by Petrascheck 
(1979). 

Other treatments have appeared in the literature 
for the plane-wave situation (Bonse & Hart, 1965; 
Bonse & te Kaat, 1971) and zero or small absorption, 
for applications to neutron diffraction (Rauch & 
Suda, 1974; Staudenmann, Werner, Colella & 
Overhauser, 1980). 

The spherical-wave treatment enables one to evalu- 
ate the intensity distribution as a function of position 

on the back of the third crystal slab of the inter- 
ferometer. While such information is valuable in 
evaluating the overall performance of an inter- 
ferometer in terms of the residual strain resulting 
from crystal defects and fastening techniques, quite 
often in designing an interferometer the attention is 
concentrated on the overall counting rate, namely on 
the integrated intensity emerging from the third slab, 
for which a plane-wave theory is adequate. Parseval's 
theorem, in fact, assures us that the integrated 
intensities are the same whether a plane- or a 
spherical-wave treatment is employed (Kato, 1968). 

In this paper we present a very simple and straight- 
forward derivation for the integrated intensities of 
some of the beams present behind the third slab of 
an interferometer made up with three slabs set for 
Laue diffraction (asymmetric), with full consideration 
of absorption, so that the formalism can be used in 
the X-ray case when absorption is important. 

We will treat the case of a single slab first, and 
derive expressions that will then be combined in such 
a way as to obtain in a straightforward fashion the 
amplitudes of the waves multiply diffracted by a stack 
of crystal slabs, as a function of a global phase shift 
/3, introduced along one of the interfering beams. The 
only critical assumption here is that all the various 
slabs are exactly coherent in space, which is true when 
monolithic interferometers are used. 

Use will be made throughout this paper of 
the dynamical theory formalism developed by 
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Zachariasen (1945), for the basic expressions of the 
amplitudes diffracted and transmitted by a crystal 
slab in the Laue case. 

2. Diffraction through one slab only 

We will consider in this section the situation depicted 
in Fig. 1. Oi and Hi are amplitudes of vacuum plane 
waves incident on the crystal. O s and Hy are ampli- 
tudes of vacuum plane waves leaving the crystal. The 
vacuum wave vector Ko associated with Oi is chosen 
in such a.way as to excite a strong Bragg reflection 
B ,  inside the crystal. The wave vector K ,  associated 
with Hi is defined by 

K t  t t H = K o + B H  
(1) 

KH = Ko = 1/A 

where the superscript t indicates the tangential com- 
ponent on the crystal surface. The vacuum wave vec- 
tors associated with the Or and H r beams are identical 
to Ko and K , ,  respectively. 

Note that in Fig. 1 only one wave field is depicted, 
propagating normal to the slab. In reality there are 
in general two wave fields, with directions of propaga- 
tions within Ko and K ,  (approximately) for each 
direction of incidence, corresponding to the two nor- 
mals to the dispersion surface at the two tie-points 
(Batterman & Cole, 1964). For the sake of simplicity 
in drawing Fig. 1 and for the purpose of this dis- 
cussion we can consider only one wave field without 
loss of generality. The formulae derived later will of 
course include both wave fields. 

2.1. First case; Oi only is present 

We first consider the case in which only one beam 
is incident on the entrance surface, with wave vector 
Ko. Following the customary procedure of neglecting 
refraction effects at the surface, the boundary condi- 
tions require the vacuum electric field and the crystal 

Fig. 1. Laue  d i f f rac t ion  t h r o u g h  a single slab. The  v a c u u m  wave  
vec tors  fo r  the O and  H b e a m s  are  ident ical  on  b o t h  sides.  For  
the sake o f  clari ty,  on ly  one  wave  field inside the crystal  is s h o w n ,  
p r o p a g a t i n g  p e r p e n d i c u l a r  to the slab. 

displacement field to be equal, and can be written 

Oi = D o t  + D o 2  
(2) 

0 = xtOo, + x2Do2 

where Dot and 302 are the two amplitudes of the 
electric displacement inside the crystal, and xt, x2 
are the ratios D . t / D o t ,  DHz/Do2 defined in 
Zachariasen's (1945) book (equations 3.121-3.126). 
Solving the system of equations (2) we obtain 

Do, = O i x 2 /  ( X 2 - -  X , ) ;  
(3) 

0 0 2  = - -  O i x l / ( X 2  --  X 1 ). 

The boundary conditions at the exit surface are 

Of = Oi exp (-27riKo.b) x2c t -  XlC2 (4a) 
X 2 -- X, 

X 2 X , (  C, --  C2) 
H f = O i e x p [ - 2 ¢ r i ( K o . + B H . ) b ]  , (4b) 

X 2 - -  X, 

where Ko. and BH. are given by Ko. n and BH.-, 
respectively, n is a unit vector normal to the crystal 
slab, pointing inside the entrance surface, b is the 
thickness, and c,, c2 are the exponential factors 
defined by Zachariasen (equations 3.121-3.126): 

c, = exp (-2zriS'oK2b/Ko,,), 

where 6(i) are the eigenvalues associated with the crys- 
tal wave vector/3o when a Bragg reflection is excited. 

2.2. Second case; Hi only is present 

We now consider the case in which the only 
incident wave is along the direction of the diffracted 
beam, with wave vector K, .  The boundary conditions 
on the entrance surface now give 

0 = Dot + Do2 
(5) 

H i = x ,  D o t  + x 2 D 0 2  

Do, = --Hi(x2--Xl)-l; 
(6) 

Do2 = Hi(x2 - x,)- ' .  

At the exit surface, 

O s = Hi exp (-27riKo,b) 
C 2 --  C t 

X 2 - -  X, 
(7a) 

Hf= Hi exp [-2-rri(Ko,, + B,,,)b] 
X2C 2 --  X ,  C, 

X 2 -- X 1 
(7b) 

2.3. Third case; Oi and Hi are present 

The boundary conditions at the entrance surface 
give 

Oi = Dol + D02 
(8) 

Hi = x, Dot + x2D02 
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from which we get 

Do, = ( Oix2-  Hi)~ (x2-  x,) 

Do2 = ( / 4 / -  Oix,) / (X 2 -- Xl). 

At the exit surface we get 

Of = exp ( - 2  rriKo,b ) 

x (OiX2Cl - Hicl + Hic2-  Oix, C 2 ) / ( X  2 - - X  1 ) 

(9) 

(10a) 

H / =  exp [-2"rri(Ko,, + B. , , )b]  

X ( O i X I X 2 C  1 -- H~x~ c~ + H i x 2 c  2 - O i x i x 2 c 2 )  

x (x2 - x,)  -l. (10b) 

We notice that both O/ and Hf consist basically of 
two terms, one due to Oi only, and another one due 
to Hi only. 

3. Diffraction through three parallel equidistant slabs 

We will now consider the situation depicted in Fig. 
2, corresponding to a standard LLL interferometer. 
The nomenclature of the various beams is transparent 
from the figure. Again, we only show one particular 
wave field, propagating normal to the slabs. Since we 
are considering a monolithic interferometer, the 
resonance error (James, 1962) is the same in all 
crystals, so the direction of propagation of the 
wave field shown in the figures is the same in all 
three slabs. 

It is important to note at this point that the ampli- 
tudes O1, H.,  H~ ,  0 6 ,  H~-~, O/, H/ of the beams 
shown in Fig. 2 are all defined at the exit surfaces of 
the three slabs, and are all related to vacuum waves. 
The unlabeled beams are not considered in the 
foregoing treatment. 

From (4) 

H~ = XIX2(X2Cl  - XIC2) 
(X2__ Xl) 2 (Cl -- C2) 

x exp [-27riKo,,(a +2b) ]  exp (-2rriBn,~b) 
(11) 

where a is the distance between the slabs. 
From (4b) and (7a), 

O ~ = - x , x d c ~ - c , ) ~  
(X2-- XI) 2 

x exp [-2~-i(2Ko, + BH,,)b] exp (--2rriKh,,a) 

where 

Kh,, = Kh • n 

= [ 1 / A 2 - ( K  'u )211/2 

and K ~ is given by (1). 

(12) 

Let Ojo be the contribution to O / d u e  to O~, and 
0 m the same contribution due to H~.  

From (4a) and (12), 

--XIX2( C 2 -- C l ) 2 ( X 2 C l -  X1C2 ) 

O f o =  (X2__ XI)3 

x exp [ -2rr i (3  Ko. + BH.)b] 

x e x p [ - 2 r r i ( K o . +  KH,~)a]. (13) 

From (7a) and (11), 

-x , x2(  c2-  c,)2( x2c, - x, c2) 
Om = (X2-- Xl) 3 

x exp [ - 2  ~-i(3 K0. + B . .  ) b] 

x exp [-2rri(Kon + K.n )a] .  (14) 

It is therefore shown (important result) that Oyo and 
0 m are identical. This result could be anticipated by 
noting that each photon in Oi takes the same "bounces' 
before going into Or. If a phase shift, say/3, is intro- 
duced along one of the two interfering beams ( H ~  
or O~i), the intensity of Or will be 

IO, I 2= [Oro(1 + eit~)12 

= 210,ol2(1 +cos/3) ,  (15) 

which shows that, in an ideal interferometer, the 
intensity of the Oj beam varies between a maximum 
value and zero. 

We now proceed to evaluate H/. Again we consider 
the two separate contributions, H/o (due to 0 6 )  and 
H m (due to H~) .  

From (4b) and (12), 

(XlX2)2(c2-c,) 3 
Hfo = 

(X2--XI)  3 

x exp [-27ri(3 Ko. + B., , )b]  

x e x p [ - 2 r r i ( K o . +  KH.)a].  (16) 

b 

i, 
o b o b 

I I 

Fig. 2. Laue-case diffraction through three crystal slabs. The inter- 
fering beams are labeled Of and H r . The unlabeled beams on 
the right side of the third slab are not considered in the analysis 
given in this paper. 
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From (Tb) and (11), 

Hit , -  
x ,  x : ( x ~ c ,  - x ,  c O (  c ,  - c g ( x = c =  - x ,  c ,  ) 

(x~- x,)3 
x exp [-2-n'i(3 Ko,, + 2Bn.)b]  

x exp [-27ri(K0,  + Kn,,)a] (17) 

I Hsl2 = IHyo + e'~Hill 2. (18) 

We see now that Hyo and Hilt are no longer identical. 
Therefore, even when /3 =T r, Hf is not zero, which 
means that the intensity of H S varies between two 
finite values. 

The fringe contrast is always greater for the O s 
beam, which is in general the most interesting beam 
in almost all experimental situations involving inter- 
ferometers. 

Let 

Then 

H~oHil = p e i8. 

Insl2 = IHsol ~ ÷ I H i l l  ~ ÷ 2p cos ~ cos 

- 2 p  sin & sin/3. (19) 

Another interesting quantity, to evaluate is the 
intensity of the beam called H ~  in Fig. 2. This beam 
escapes the interferometer if the third slab is not too 
big, it does not exhibit interferential effects, and is 
sometimes used to adjust the interferometer at the 
correct Bragg angle. 

From (4b) and (7b), 

H ~, = ( c' - c2)( x ~ c ~ -  x , c , ) x 2 x ,  

( x ~ - x , )  ~ 

× exp [ -2r r i (2K0.  + 2Bu.)b]  

x exp (-2 ~iKu.a ). (20) 

It is convenient at this point to integrate with respect 
to 0, the angle of incidence, since we are interested 
in integrated intensities. 

Let 
4 - 0 0  4-oC, 

Ros = l losl  =d0,  R n y =  I lHsl 2d0, 
- o o  - o o  

+ o o  

R ~ =  ~ In,~12d0, 
- o c "  

4 - 0 0  4 - o 0  

A= ~ [Ofo[ 2dO, B= ~ ([Ufo[2+lnil[2) dO, 
- - o 0  -¢x2  

-t-o0 4-o0  

C =  j" ( p c o s ~ ) d 0 ,  D =  j" ( p s i n ~ ) d 0 .  
- - o o  - o o  

We finally obtain 

Ros = 2A(1 +cos /3)  

Rns=  B+2C cos f l - 2 D  sin/3. 

4 .  N u m e r i c a l  e x a m p l e s *  

Let us consider a neutron interferometer, with A = 
1.42 A; slab thickness t = 2 mm; hkl = 220. 

Roy = 8.31 x 10-7(1 +cos  fl) 

RHy = 2.12× 10-6-8-31 x 10 -7 COS 13 

- 8"03 x 10 -'2 sin/3 

R~  uu = 1 "85 X 10 -6. 

Note that the last term of RHf is negligible, and that 
the fringe contrast in Rnf is reversed with respect to 
Roy, in other words, when cos 13 = - 1 ,  Ros--0 and 
RHf = maximum. This result was expected, because 
thermal neutrons suffer negligible absorption in 
silicon, and the reversal in contrast is a consequence 
of conservation of neutrons. The contrast reversal can 
be seen, for example, in the first neutron fringe pattern 
observed by Rauch, Treimer & Bonse (1974), Fig. 2. 
On the contrary, if we consider the same inter- 
ferometer with MoKa X-rays, A =0.711 A, hkl= 
220, 

Rof = 8"58 × 10 -8 (1  + c o s / 3 )  

R,¢ = 7.40 × 10 -8 + 6.76 x 10 -8 cos/3 

- 1.81 x 10 -II sin/3 

R~  11 = 6 . 9 6 ×  10 -7. 

We now see that, again, the third term in Rnf is 
negligible, and that the cos/3 term now appears with 
a plus sign. The fringe pattern of Rnf is now in phase 
with that of Ros. Since absorption is important with 
X-rays, conservation of photons does not hold any 
more. It is also apparent from the last numerical 
example that the fringe contrast and the intensity of 
RHr are not too different from those of Roy, all of 
which has been observed experimentally in many 
laboratories, including our own. 

The last example is similar to the previous case, 
except that the 440 reflection is now considered. 

* The integrands involved in evaluating, by numerical integra- 
tion, Rof, RHf, R~ u, A, B, C and D exhibit a rapidly oscillating 
behavior on the sides of the central peak, when absorption is close 
to zero. This may cause some problems in evaluating those integrals 
by computer. The same problem arises in standard two-beam 
dynamical theory, in which the fast oscillating terms are averaged 
out (Zachariasen, 1945, equations 3.150, 3.155). When dealing 
with an interferometer a similar procedure could be adopted, but 
it does not seem the right thing to do. Averaging out the oscillating 
terms is equivalent to assuming a thickness roughness At of the 
order of the Pendeli6sung length. In effect, in order for an inter- 
ferometer to work, the crystals slabs must be polished to a small 
fraction of a Pendell6sung length. A correct approach would be to 
apply the averaging procedure only to the sides of the central peak. 
An easy way out is to use the integrand expressions as they are, 
and to repeat the numerical computations several times by ran- 
domly shifting (using random-number generators) the integration 
mesh with respect to the 0 axis, and then taking average values. 
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The values are 

Rof  = 9 .14x  10-9(1 +cos  13) 

R , / =  7.96 x 10-9+6.99 x 10 -9 cos 

-3"89 x 10 -12 sin 13 

R~  li = 1 .52x 10 -7. 

The fringe pattern is essentially the same as for the 
220 reflection, except that  the intensities are much 
weaker.  

In conclusion,  we have shown how the fringe pat- 
tern and all relevant intensities for a LLL inter- 
ferometer  can be obtained by repeated applicat ions 
of the expressions for the ampli tudes obtained for 
diffraction through a single slab. The neutron and the 
X-ray cases can both be treated with the same formal- 
ism, provided the appropr ia te  parameters  are intro- 
duced. The t reatment  is given in terms of  plane waves, 
which is appropr ia te  if global integrated intensities 
(i.e. counting rates) are of  interest, rather than spatial 
intensity distributions across the beams emerging 
from the last crystal of  the interferometer.  

This work was suppor ted  by the Nat ional  Science 
Foundat ion,  Gran t  DM R-8715503. 
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Abstract 

An X-ray powder  diffraction cell for pressures up to 
0.9 GPa  was constructed.  The pressure dependence  
of the unit-cell parameters  and pressure- induced 
changes of  the orientat ion of  anthracene molecules 
were determined at ambient  temperature.  The diffrac- 
tion patterns were analysed with a modified Rietveld 
program. The compar ison  with calculations based on 
a t o m - a t o m  potentials (6-exp-type) between rigid 
molecules using Williams's [J. Chem. Phys. (1967). 
47, 4680-4684] and Kitaigorodski 's  [J. Chim. Phys. 
Phys. Chim. Biol. (1966). 63, 9-16] parameters  shows 
that sat isfactory agreement  can be obtained with the 
predictions. 

I. Introduction 

Anthracene  crystallizes in space group P21/a (CSh) 
with two molecules in the unit cell. There is no phase 
change at room tempera ture  at the pressures used in 

our experiment. 

0108-7673 / 88/061059-07503.00 

The crystalline structure of  anthracene is mainly 
determined by weak van der Waals-like forces, 
whereas the binding within the molecule is provided 
by strong covalent  bonds.  For this reason the p lanar  
shape of  the molecule remains essentially unchanged  
when it is incorpora ted  into a crystal lattice. The 
distances between the molecules are changed under  
pressure. Therefore it is possible to probe the shape 
of  intermolecular  forces or potentials. It turns out 
that, apar t  from distances, the orientat ions of  
molecules are altered too. Both effects can be seen in 
elastic scattering via accurate  determinat ion of  Bragg 
intensities as a function of  pressure. This method is 
in a way complementa ry  to inelastic neutron scatter- 
ing where informat ion about  the intermolecular  
forces can be deduced from measured phonon  disper- 
sion curves. The advantage  of  inelastic neutron scat- 
tering experiments  stems from the fact that  more 
experimental  da ta  are available to fit a model.  

In the next sections we report the experimental  
details, the results of the powder diffraction 
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